[David Diehl, site manager and coordinator at the Rensselaer Darrin Fresh Water Institute (DFWI), recently organized a visit by students from Manhattan’s Harlem Academy to learn about the Jefferson Project at Lake George. In this guest post, he chronicles the three-day visit and the topics students learned about. The Jefferson Project is a collaboration between Rensselaer, IBM Research, and The FUND for Lake George, founded to develop a new model for technologically enabled environmental monitoring and prediction to understand and protect the Lake George ecosystem and freshwater ecosystems around the world. This is the third year Harlem Academy has visited DFWI.]

Credit: Vanessa Wuerthner

[The Jefferson Project at Lake George is conducting ongoing research into how human activities may be affecting the lake. This guest blog by Devin Jones, a former postdoctoral research associate in the lab of Jefferson Project Director Rick Relyea, summarizes recent research published in the journal Environmental Science & Technology. The Jefferson Project is a collaboration between Rensselaer, IBM Research, and The FUND for Lake George, founded to develop a new model for technologically enabled environmental monitoring and prediction to understand and protect the Lake George ecosystem and freshwater ecosystems around the world.]

What did you want to know?

[The Jefferson Project at Lake George is conducting ongoing research into how human activities may be affecting the lake. This guest blog by Matt Schuler, a postdoctoral research associate in the lab of Jefferson Project Director Rick Relyea, summarizes recent research published in the journal Oikos. The Jefferson Project is a collaboration between Rensselaer, IBM Research, and The FUND for Lake George, founded to develop a new model for technologically enabled environmental monitoring and prediction to understand and protect the Lake George ecosystem and freshwater ecosystems around the world.]

What did you want to know?

 

Anyone who’s struggled to get their point across in a foreign language they haven’t mastered knows the benefit of enlisting the full contents of the human communication toolbox: waving your arms, imploring with your eyes, describing the word you lack with an assembly of the words you have, even throwing in a little English when nothing else comes to mind is all part of the repertoire. It’s clunky, but our flexible human minds bridge the gap between the ideal words and meaning.

[The Jefferson Project at Lake George is conducting ongoing research into how human activities may be affecting the lake. This guest blog by Bill Hintz, a post-doctoral research associate in the lab of Jefferson Project Director Rick Relyea, summarizes recent research published in the journal Oecologia. The Jefferson Project is a collaboration between Rensselaer, IBM Research, and The FUND for Lake George, founded to develop a new model for technologically enabled environmental monitoring and prediction to understand and protect the Lake George ecosystem and freshwater ecosystems around the world.]

What did you want to know?

How is it that a shark can sense electric fields generated by its prey? To find out, glycoproteins expert Robert Linhardt turned to an instrument called a MALDI TOF TOF mass spectrometer in the Rensselaer Center for Biotechnology and Interdisciplinary Studies (CBIS), and in this post we’re going to talk about MALDI TOF TOF (we’ll get to the name), how it works, and how that makes it a valuable instrument in translational medicine.

But first, back to sharks. Sharks use an organelle – called the ampullae of Lorenzini – lining their heads to sense electrical fields generated by fish and other animals around them in the water. To understand how the ampullae of Lorenzini translates electrical fields in the water to electrical signals in their brain, Linhardt first needs a full accounting of the proteins in the organelle.

Bio-inspired chemistry, in which biological design principles are applied to the construction of man-made hybrid nano-chemical catalytic structures, is a rapidly emerging area that is attracting intense interest.

Baruch ’60 Center for Biochemical Solar Energy Research at Rensselaer was established to meet this challenge through the combined and iterative use of chemical, biochemical, physical, nanomaterials, and advanced computational approaches for the design of highly efficient and cost-effective bio-inspired photovoltaic devices. During the annual Rensselaer Reunion & Homecoming weekend, the Baruch ’60 Center hosted a poster session and laboratory tours for the School of Science alumni “experiences” event.

Below are a few images from the event.

[Four years ago, Rensselaer Polytechnic Institute and the Ichan School of Medicine at Mount Sinai entered a relationship to promote personalized medicine and medical care through collaborations in education, research, and development of new diagnostic tools and treatments. Several innovative projects on Alzheimer’s disease, cancer, diabetes, and osteoporosis have already emerged from this partnership. As part of the relationship, the Icahn School hosted a Heath Hackathon, supported in part by the Rensselaer Center for Biotechnology and Interdisciplinary Studies, to explore transformative ideas in several areas of health-care delivery. The event, held October 13-15 in New York City, included Rensselaer students from all five schools, as well as students from Mount Sinai Medical Center, Columbia University, and CUNY, and hospital staff. Rensselaer students were part of all the three finalist teams who will compete for a Shark Tank-type showcase in February. In this post, the Approach spoke with Angela Su, a member of one of the finalist teams.]

[The Jefferson Project at Lake George is conducting ongoing research into how human activities may be affecting the lake and surrounding wetlands. This guest blog by Aaron Stoler, a post-doctoral research associate in the lab of Jefferson Project Director Rick Relyea, summarizes recent research published in the journal Environmental Pollution. The Jefferson Project is a collaboration between Rensselaer, IBM Research, and The FUND for Lake George, founded to develop a new model for technologically enabled environmental monitoring and prediction to understand and protect the Lake George ecosystem and freshwater ecosystems around the world.]

What did you want to know?

[The Jefferson Project at Lake George is conducting ongoing research into how human activities may be affecting the lake and surrounding wetlands. This guest blog by Aaron Stoler, a postdoctoral research associate in the lab of Jefferson Project Director Rick Relyea, summarizes recent research published as a featured article in the journal Freshwater Science. The Jefferson Project is a collaboration between Rensselaer, IBM Research, and The FUND for Lake George, founded to develop a new model for technologically enabled environmental monitoring and prediction to understand and protect the Lake George ecosystem and freshwater ecosystems around the world.]

What did you want to know?