Images of plankton identified using IBEIS

Images of plakton captured with CPICS. Courtesy of

Among my favorite research projects at Rensselaer are two – the Jefferson Project at Lake George, and the Image Based Ecological Information System (IBEIS) – that use data and computation to understand and protect our environment. So my interest was piqued when I heard researchers involved with the two projects were planning a collaboration. A collaboration that, for the purposes of this blog post, I’m calling “Plankton Cam.”

The CPICS camera developed at Wood Hole Oceanographic Institute

The idea behind Plankton Cam is to: tow a specialized camera through the waters of Lake George, capturing more than 100,000 images per day; use advanced pattern recognition software to sort resulting images of phytoplankton by species; and then develop tools to visualize the distribution patterns of the animals at the base of the Lake George food web. The camera, pictured to the left, was developed at the Woods Hole Oceanographic Institute.


A vertical profiler deployed as part of the Jefferson Project at Lake George.

On a windy day on Lake George, when the surface is whipped into white-caps, you might wonder: where is all that water going? The answer, in astonishing detail, is within our grasp as a network of sensors is deployed throughout the watershed as part of the Jefferson Project at Lake George, a partnership between Rensselaer Polytechnic Institute, IBM, and The FUND for Lake George.

The sensors, including two “vertical profilers” like the one pictured above (deployed on just such a windy day last week), will gather data to fuel three complex computer models – a weather model, a runoff and circulation model, and ultimately, a food web model – that will give scientists an unprecedented understanding of the Lake George watershed and how stressors such as contaminants, invasive species, and development affect its pristine ecosystem.


A group of middle school students from the Greater Amsterdam School District got a taste of college life as part of a program offered by the Center for Initiatives in Pre-College Education this summer. The students spent a week on campus learning how to build and program robots and working together to put their robots through a series of challenges.

The program encourages the students, who will all enter 8th grade at the Wilbur H. Lynch Literacy Academy this September, to think about college earlier than most would otherwise, said Assistant Principal Chuck Myers. The students who participated were all recommended for the residential program by their science teachers. When they get back to school, “they’ll be a step ahead and will have a lot of knowledge to share with their classmates,” Myers said.


Great communication about science neatly and elegantly explains immensely complex concepts (think: Neil DeGrasse Tyson at his best) in language that non-scientists can understand and relate to.

Great communication about science is also really difficult to do. Science is messy, complex concepts are interconnected, and knowledge is constantly growing and changing. The nature of a scientist’s job is to have a laser focus on one particular subject and seek to expand knowledge in that area. That’s great for scientific progress, but not so great for explaining the broader picture of the universe to laypeople.


Rensselaer researcher Carlos Varela has developed a computer system that detects and corrects faulty airspeed readings, such as those that contributed to the 2009 crash of Air France flight 447. Their approach to detecting errors could make autopilot systems safer and could also be applicable in many systems that rely on sensor readings.

Varela spoke to WAMC recently and his explanation of his work aired on the Academic Minute July 25.

Here’s an excerpt of his explanation:

Every day we use machines and devices that are loaded with sensors collecting information on everything from outside air pressure and traffic jams to body temperature and heart rate.


On Thursday, July 24, Wiseman and fellow Astronaut Steve Swanson will be speaking live with the House Science, Space, and Technology Committee from the International Space Station. Watch the conversation live at 11 a.m. or follow it on twitter using the hashtag #LiveFromSpace.

In just 140 characters NASA Astronaut Reid Wiseman is bringing his 167,000 (and counting) Twitter followers aboard the International Space Station (ISS) several times a day, sharing the amazing and mundane details of life in space. His stunning photos are retweeted hundreds, and sometimes thousands, of times. His Vines – six-second video clips shared on a social media platform – garner incredulous reactions from his Earth-bound fans and are the first to ever be shared from space.



Detail of the comic strip Andrew Zonenberg etched onto a human hair

(Rensselaer doctoral candidate Andrew Zonenberg explains how his research led him to create the “world’s smallest comic strip” by using focused a ion beam to carve the drawings onto a strand of his girlfriend’s hair in this great guest post.)

As a doctoral candidate — working in with Professor Bülent Yener, director of the Data Science Research Center — my research focuses on how to make software harder to exploit by changing the way computer hardware is designed. This sort of work tends to blur the line with hardware security, tamper resistance, etc.


Student game designers from Rensselaer Polytechnic Institute and other schools including Champlain College and Rochester Institute of Technology gathered at EMPAC Saturday to showcase a vast array of video games they had designed at the 10th annual GameFest.

This was my first GameFest and I was so impressed by the sheer number of games on display and the quick pitches I heard from students. Read a little more about students participating in GameFest in this Times Union article.

The GameFest competition was judged by professional video game developers from Vicarious Visions, a firm co-founded by RPI grad Karthik Bala ’97 and based in Menands. Here’s the full list of winners:


How many zebras?

How many individual zebras are represented in this collage of 10 photos? If we were looking at human faces, most of us would have little trouble differentiating between multiple photos of the same person, and photos of different people. But when it comes to wildlife, people are easily stumped.

Not so for computers. If the differences between zebras, or other animals with distinctive markings, can be expressed in mathematical terms, computers can analyze those differences – and identify which animals appear in each photograph –at speeds and levels of accuracy that leave humans in the dust. And that is the idea behind the experimental Image-Based Ecological Information System, or IBEIS.


Rick Mastracchio, a 1987 graduate of Rensselaer Polytechnic Institute and a NASA astronaut currently aboard the International Space Station, took questions from Rensselaer students Friday. The event was coordinated with Mastracchio’s three alma maters – Rensselaer, UConn, and University of Houston-Clear Lake. Six students from each institution were selected to ask Mastracchio questions and the entire event was streamed live on NASA TV.

Dean of Science Laurie Leshin emceed the event for Rensselaer and, as a former NASA executive, was able to offer a unique perspective on Mastracchio’s experiences and details about the ISS (including that it is about the size of a six-bedroom home).

The students from UConn went first; Mastracchio graduated from UConn in 1982 with dual bachelor’s degrees in electrical engineering and computer science.